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Abstract: Ability to identify open-loop transfer functions using normal process data from a running plant 
is immensely useful.  Open-loop transfer functions help to optimize PID tuning precisely, implement 

Advanced Process Control (APC) inside the plant’s DCS or PLC, improve Model Predictive Control 

(MPC-DMC/RMPCT) performance by improving models and also build dynamic process control 

simulator for training.  This paper shows a new and novel method of using complete closed-loop data 

without any intrusive step tests for model identification.  The technique identifies multivariable open-

loop models with slave PIDs in auto or even cascade modes and then shows how to optimize PID tuning 

and improve MPC models.        
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1. INTRODUCTION 

Most chemical plants today are controlled by a DCS 

(Distributed Control System) or a PLC (Programmable Logic 

Controller).  Data historians store process data conveniently 

available in Excel format.  During the normal operation of a 

plant, control room operators make setpoint changes to adjust 

process and operating conditions required for making the 
desired product grades and achieving the desired production 

throughput.  Slave PID controllers can be in auto or cascade 

with their setpoints manipulated by an operator, a DCS-

resident APC scheme or a MPC like DMC or RMPCT.  

Identification of open-loop dynamic models in either transfer 

function format or step-response coefficient format can be 

easily done by conducting intrusive step tests on a slave 

control loop in manual mode or even step tests on the 

setpoint in auto mode.  Technology and tools for open-loop 

tests and model identification has been used successfully for 

decades with good results.    

However, multivariable identification of open-loop dynamic 

models with multiple inputs with the slave control loops in 

cascade mode is difficult.  Using current methods, at best 

produces open-loop models with low level of confidence and 

uncertain results. 

This paper describes an amazing new method capable of 

identifying multivariable open-loop transfer functions using 

completely closed-loop data with slave control loops in 
cascade mode amidst high frequency noise, drifts and 

unmeasured disturbances.  No intrusive open-loop tests are 

required.  The normal plant operating data can be used.   

2. OPEN-LOOP DYNAMIC MODELS 

Almost 98% of all dynamic relationships in chemical 

processes can be characterized by zero-order, first-order, 

second-order or open-loop unstable type transfer functions as 

shown in Figure 1. 

 

Figure 1.  Open-loop dynamic models in chemical plants  

The remaining 2% of models that show a very complex shape 

with inverse response and roller-coaster squiggly shapes are 

either not real, better off not used as a model in a MPC or 
could be represented as a reduced order model fitting one of 

the categories is Figure 1.  Most higher order models can be 

reduced to lower orders by extrapolating the dead time and 

minor shape modification without losing significant model 

prediction accuracy.   

Current system identification algorithms and software work 

well for simple cases shown in Figure 2 below.  However, in 

many cases such intrusive step tests are hard to conduct due 

to process sensitivity and interactions.  Step tests may cause 
product properties to change unacceptably.  Normal plant 

operation involves ramping setpoints of slave PID 

controllers.  With ramping there are no abrupt step tests and 

conventional open-loop model identification methods are not 

useful.  During the normal plant operation, setpoints of 

multiple variables are changed often simultaneously.  

Multiple MVs can affect multiple CVs.  Superimposed on 

these multivariable simultaneous changes are the menacing 



 

 

     

 

effects of unmeasured disturbances and noise.  The new 

COLUMBO algorithm provides this new, novel breakthrough 

functionality.  

 

Figure 2.  Conventional open-loop step tests 

3. CLOSED-LOOP DATA FROM NORMAL OPERATION 

Figure 3 shows control of hydrogen composition in a reactor.  

CV data are hydrogen composition.  MV moves show 

hydrogen flow setpoint changes in cascade mode made by the 

hydrogen composition master controller in auto mode.  This 

data is illustrative of typical and normal plant operation.  At 

the very left is start-up followed by steady state and some 

planned setpoint changes.  Strong unmeasured and 
unexplained disturbances are superimposed.  This data would 

be considered “bad” or not “rich-enough” for identification of 

open-loop dynamic models.  But the new COLUMBO 

algorithm is able to identify the open-loop transfer function 

as shown in Figure 3.  The bottom-most trend shows the 

isolated unmeasured disturbance signal separated from the 

transfer function contribution.  

 

Figure 3.  Closed-loop data from normal plant operation 

Figure 4 shows another complex data set showing a master 

AC (analyzer controller) manipulating a slave FC controller. 
The changes in the CV value in the top trend is because of 

some setpoint ramping necessary for making the product 

grade changes.  The data is oscillatory and full of unmeasured 

disturbances.  The new COLUMBO algorithm is able to 

isolate the unmeasured disturbances (see the bottom-most 

trend in Figure 4) and identify the true open-loop transfer 

function model (delay = 15 min, process gain = 103.7 and 

first order time constant = 35 min).  Conventional tools, 

algorithms and methodologies cannot make much out of such 

complex closed-loop data tainted by unmeasured 

disturbances and that’s why COLUMBO is a true 

breakthrough in process control with its ability to identify the 

true open-loop transfer functions using such closed-loop data.    

 

Figure 4.  Closed-loop oscillatory data from normal plant 

operation 

Figure 5 shows a master in auto mode and its slave PID in 

cascade mode.  Some setpoint changes have been made to the 

master as part of the normal plant operation.  There have 

been no new intrusive step tests conducted for model 

identification.  Only normal plant data from normal planned 

operation is shown.  With the slave PID in cascade mode and 
the master PID in auto mode, COLUMBO algorithm is able 

to identify both open-loop transfer functions: one from 

control valve to slave CV and the second from slave setpoint 

to master CV.     

 

Figure 5.  Master-Slave closed-loop data with master in auto 

and slave in cascade modes 

Figures 6 and 7 show a spectacular example from a real plant 

distillation column.  The column feed, reflux flow and 

reboiler duty change in a correlated manner – at the same 

time.  A MPC (DMC) is on and makes changes to the slave 

setpoints with the slave PIDs in cascade/remote mode.  Three 

open-loop transfer functions are simultaneously identified 

with completely closed-loop data.  These identified open-



 

 

     

 

loop transfer functions were used to modify models in the 

DMC.  Control performance of the DMC improved after the 

models were changed with the newly identified models.  

 

 

Figure 6.  Multivariable closed-loop model identification 

 

Figure 7.  Multivariable model identification with complete 

closed-loop data 

Figure 8 shows another spectacular example of the ability of 

COLUMBO algorithm to identify control valve stiction 

simultaneously along with the open-loop transfer function 

parameters with closed-loop data comprising of setpoint 

changes in auto mode.  The ability of COLUMBO to identify 

control valve stiction with such normal operating data is 

extremely useful in chemical plants where old control valves 

can start deteriorating followed by loss of control quality.  

When slave PIDs deteriorate due to bad control valves, this 
also reduces control quality of an APC or MPC followed by 

lost profits and lost benefits.  

 

Figure 8.  Identification of control valve stiction along with 

open-loop dynamic model for a flow PID control loop  

4. ISOLATION OF RESIDUALS 

Residuals are the unmeasured disturbances that creep into 

any process.  A good example of an unmeasured disturbance 

is unknown and unpredictable changes in heating value of 

fuel gas to a furnace for temperature control.  Current system 

identification algorithms are sensitive to unmeasured 

disturbances and can generate false models.  COLUMBO has 

the amazing capability to isolate the unmeasured disturbances 

and high frequency noise while determining the accurate 

dynamic models.  Figure 9 shows a simulation example 

comprising of a single step test on the MV.  The CV rises and 
settles and then due to an unmeasured disturbance, the CV 

creeps down a little.  Using conventional model identification 

algorithms will produce a low process gain but COLUMBO 

produces the correct process gain of 5 in this example and 

isolates the unmeasured disturbance shown in the bottom 

trend.      

 

Figure 9.  Isolation of unmeasured disturbances 

5. PID TUNING OPTIMIZATION BASED ON CUSTOM 
SIMULATIONS  

Most PID tuning done in the control room is still based on the 

age-old trial-and-error method or using some heuristics like 

IMC (Internal Model Control), Ziegler Nichols Open-

Loop/Closed-Loop, Cohen Coon or Lambda tuning.  These 

methods were satisfactory for many years but in recent times, 

plants are built to be more efficient using many recycle 

streams, process interactions and complex designs making 

some of the old PID tuning methods hard to use effectively.  

PITOPS tuning software offers new PID tuning algorithms 

and methodology that is easy to apply and effective on the 
newer, complex and interactive plant designs.  Instead of 

using generic heuristic equations for tuning, PITOPS 

minimizes the error between the setpoint and PV based on 

configured custom simulation.  A custom simulation 

comprises of typical setpoint changes done by the operators 

or a cascade PID, APC or MPC.  Typical disturbances and 

noise seen in the real DCS or PLC screens and trends can be 

easily configured in PITOPS.  Sometimes the goal is for the 

PID to respond well to step changes in the setpoint, 

sometimes may be the setpoint is ramped slowly.  Sometimes 

setpoint of slaves need to respond fast based on their master 
PIDs.  Sometimes, setpoints are never changed but the PID is 

often seeing severe disturbances that could be pulse, ramp or 

sinusoidal waves.  External or unmeasured disturbances that 



 

 

     

 

appear as sinusoidal waves could be due to interaction from 

neighboring PIDs.  Conventional PID tuning also leans on 

relative gain analysis and building two loops interacting with 

each other.  The new and novel approach from PITOPS 

allows you to configure a typical setpoint change (step/ramp 

or complex trajectory), typical disturbances and typical noise 

followed by minimization of the error between the setpoint 

and the PV of the PID.  This approach works well for slaves, 

masters, multiple PIDs, constraint override PIDs, any type 

and any combination of a chain comprising of one or more 

PID loops.  Figure 9 shows a PITOPS PID tuning 
optimization example.  Here the PITOPS optimizer 

minimizes the absolute error between the PV and setpoint for 

a simulation comprising of a setpoint change, ramp 

disturbance, pulse disturbance and noise in the sensor.  The 

optimizer allows imposing a rate-of-change limit on the 

PID’s OP so that abrupt valve changes will not disturb 

downstream units.  PID tuning parameters from this approach 

are markedly superior to trial-and-error and heuristic-type of 

PID tuning methods.     

 

 
 

Figure 9.  PID tuning optimization based on typical SP 

change, disturbances and noise as seen in real plant  

6. Advanced Process Control (APC) Schemes inside a DCS 

or PLC  

Knowledge of open-loop dynamic process models in the form 
of transfer function parameters can be used to design and 

implement powerful APC schemes inside a DCS or even a 

PLC.  Many processes can benefit tremendously by 

implementing traditional APC comprising of multiple 

cascade PIDs, selector-based override constraint control 

schemes, model-based control schemes, inferential control 

schemes and virtual sensors.  These can be built in a DCS or 

PLC without the need for a MPC.  Many engineers resort to 

selecting and implementing an MPC instead of a DCS/PLC-

resident APC because they do not have the skills and tools 

for identifying open-loop transfer functions for various MV-

CV pairs.  With COLUMBO for identifying transfer 
functions and PITOPS for APC design, compact, robust, 

reliable and easy-to-maintain APC schemes inside a DCS or 

PLC can be implemented at one fifth or less cost and effort 

compared to a MPC project.  Many processes have a pseudo-

diagonal control matrix where the density of the control 

matrix is low.  Such processes are excellent candidates for a 

DCS or PLC-resident APC and can outperform a MPC and 

produce even more plant benefits and profits.     

 

 

Figure 10.  Traditional APC inside a DCS or PLC 

7. IMPROVING MPC MODELS   

MPCs like DMC, RMPCT, Connoisseur, PredictPro and 

others are based on dynamic process models based on step 

responses on various MVs.  To generate good models, most 

MPC need uncorrelated step tests.  Only one MV is stepped 

at a time.  In order to identify the dynamic models accurately, 

holding each step anywhere from one-third to one-and-half 

times the time to steady state is recommended.  Holding for 

such long time periods after each moves requires the step 

sizes to be small – typically only 1-3% of the prevailing 

values of the slave PID setpoints.  When the MPC is on and 
working in closed-loop mode, the MV moves made by MPC 

can be significantly bigger compared to the 1-3% step tests 

during model identification.  Nonlinearities and deviations 

from the simplified principle of linear superposition can 

cause the MPC models with larger and simultaneous MV 

moves to produce effects different from the identified open 

loop models.  This is often why many MPCs need fine-tuning 

and improvements.  COLUMBO is able to convert any MPC 

model into a best fit transfer function model.  COLUMBO 

can use closed-loop data with a MPC running and improve 

the model prediction fit and subsequently the MPC models.  

This method is novel, unique and is the only method 
available for determining the real open-loop dynamic models 

based on large moves and correlated moves with several MVs 

moving simultaneously which is what happens when an MPC 

is on (active).  See Figure 11 for an overview of COLUMBO. 

8. COLUMBO and PITOPS Optimizers   

Both COLUMBO and PITOPS are equipped with nonlinear 

constrained generalized reduced gradient (NC-GRG) 

optimizers.  On top of the NC-GRG, PiControl has developed 



 

 

     

 

proprietary algorithms and code for working well with 

unmeasured disturbances, noise, closed-loop data with no 

step tests and processing of multivariable inputs.  The 

technique has been proven and tested with real plant data 

with success.   

 

Figure 11.  Steps using COLUMBO to improve MPC models 

The COLUMBO approach offers a powerful unique 

capability that is truly a breakthrough.  This is its ability to 

allow the user to fix or set constraint limits on the various 

model parameters.  In some cases, the time constants can be 

calculated based on chemical engineering knowledge and 

first principles.  E.g., knowing the gas phase reactor volume 

and dividing by the flow rate gives the time constant.  Or 

dead time may be already known based on some prior tests.  

COLUMBO allows fixing certain known parameters and then 
searches for the unknown parameters.  This approach helps to 

identify the true (more accurate) process gain of the model.  

Often, error in process gain estimation in dynamic models is 

the root cause of MPC or APC problems.  Certain parameters 

can be fixed also based on information and knowledge of 

experienced process operators and engineers.  Only 

COLUMBO algorithm allows reducing the uncertainty in the 

closed-loop optimization problem by incorporating process 

and dynamic knowledge based on various other sources and 

factors.     

9. CONCLUSION 

Most plants have the ability to generate Excel files containing 

MV, CV and FF (feedforward) data.  The ability to identify 

open-loop transfer functions using complete closed-loop data 

with just the normal plant operation without any new 

intrusive step tests is a major improvement in the process 

control field. 

System identification is inherently a complex area and 

COLUMBO makes the process easier and more successful 

compared to conventional competing approaches.  

COLUMBO offers the following functionalities: 

 Identifies multivariable dynamic models 

 Complete closed-loop data can be used from normal 

plant operation with some target changes 

 Isolates unmeasured disturbances and noise  

 Allows incorporating process knowledge, vessel 

geometry, chemical engineering first principles and 

vendor data and models into determining dynamic 

models and/or improving their accuracy. 

 Works entirely in the time domain without need for 

complex math and no need for Laplace or Z (discrete) 

domain. 

Pitops uses the NC-GRG (nonlinear constrained general 

reduced gradient optimization) method which does not need 

data conditioning or normalization (Sharmaa and 

Glemmestadb, 2013) compared to ARMAX, DMI, step 

response coefficient and impulse response methods (Peng et 

al. 2004).  
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